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We study the chiral condensate〈ψ̄ψ〉 for anSU(3) gauge theory withNf massless Dirac fermions in
the fundamental representation whenNf is increased from2 to 6. ForNf = 2, our lattice simulations of
〈ψ̄ψ〉/F 3, whereF is the Nambu-Goldstone-boson decay constant, agree with the measured QCD value.
ForNf = 6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated
asNf increases further, toward the critical value for transition from confinement to infrared conformality.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.Nz, 11.30.Qc

Introduction Theories with an approximate conformal
symmetry could play a role in describing new physics at
the TeV scale and beyond. While a non-supersymmetric,
vector-like gauge theory exhibits confinement and sponta-
neous chiral symmetry breaking with a small numberNf

of massless fermions, it becomes conformal in the infrared,
governed by a weak infrared fixed point ifNf is larger,
but just below the value for which which asymptotic free-
dom sets in [1]. There is evidence from lattice simula-
tions [2, 3, 4, 5, 6] that this infrared conformality persists
down through a “conformal window” ofNf -values where
the fixed point can become strong, and that a transition to
the confining and chirally broken phase takes place at some
valueN c

f .
Even forNf < N c

f there can remain an approximate in-
frared fixed point providing that0 < N c

f − Nf ≪ N c
f .

The scaleF of chiral symmetry breaking is then small rel-
ative to the intrinsic scales of the theory, and the fixed point
approximately governs the theory from the breaking scale
out to some higher scale.

This “walking” phenomenon can play an important phe-
nomenological role in a technicolor theory of electroweak
symmetry breaking. (If there areNf/2 electroweak dou-
blets, thenF = FEW/

√

Nf/2 ≃ 250 GeV/
√

Nf/2.)
Flavor-changing neutral currents (FCNC’s), which are
present when the technicolor theory is extended to provide
for the generation of quark masses, can be too large un-
less the associated scaleΛETC is high enough. But then
the first- and second-generation quark masses are typically
much too small. They are proportional to the quantity
〈ψψ〉/Λ2

ETC , whereψ is a technifermion field and〈ψψ〉 is
the bilinear fermion condensate defined (cut off) atΛETC .
Walking can lift the quark masses by enhancing the con-
densate〈ψψ〉 significantly above its value (O(4πF 3)) in
a QCD-like theory, while keepingΛ2

ETC large enough to

suppress FCNC’s.
The enhancement of〈ψψ〉/F 3 asNf → N c

f from be-
low has been indicated by Feynman-graph-based studies
[7, 8]. But it is important also to use non-perturbative meth-
ods since the couplings involved are strong. This letter de-
scribes a first step in this program. We focus on anSU(3)
gauge theory withNf massless Dirac fermions in the fun-
damental representation. Lattice studies have shown that
theNf = 8 theory is chirally broken, with no evidence
for even an approximate infrared fixed point [2, 4]; while
there is significant lattice evidence for conformal behavior
atNf = 12, indicating that8 < N c

f < 12 [2, 3, 4, 5, 6].
We present results here for the valuesNf = 2 and

Nf = 6, drawing on newly available computational re-
sources, including 150 million core-hours on the Blue-
Gene/L supercomputer at Lawrence Livermore National
Laboratory (LLNL). Starting withNf = 2 allows us to
check the reliability of our methods by comparison with the
phenomenological value of〈ψψ〉/F 3 for QCD. Proceed-
ing carefully towardN c

f is prudent since the emergence
of widely separated scales associated with the approximate
infrared fixed point of walking is problematic for lattice
methods. Still, inspection of our lattice results atNf = 6

indicates an enhancement of〈ψψ〉/F 3 of at least50%, and
even a very conservative lower bound based on chiral per-
turbation theory (χPT) indicates significant enhancement.

Methods For a range of small fermion massesm, we
compute the Nambu-Goldstone-boson (NGB) massMm,
the NGB decay constantFm, and the chiral condensate per
fermion 〈ψψ〉m. To set a physical scale, we also com-
pute the massMρ,m of the analogue of theρ meson and
the Sommer scaler0,m at which r2dV (r)/dr = 1.65,
whereV (r) is the static potential [9]. Since our goal is
to search for the enhancement of〈ψψ〉/F 3 asNf → N c

f ,
from the emergence of walking between the physical length
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scale and the ultraviolet cutoff, taken here to be the lat-
tice spacing, it is important to keep the lattice spacing fixed
(and small) in physical units. We first choose a value for
β ≡ 6/g2

0
atNf = 6, giving a physical scale of several lat-

tice units. ForNf = 2, we then tuneβ to match the same
physical scale in lattice units. The resultant enhancement
is lattice-sensitive, but we expect it to match qualitatively
the enhancement with a physical, continuum cutoff.

If the fermion masses are small enough, then the extrap-
olationm → 0 can be carried out by fitting the results for
M2

m, Fm and 〈ψψ〉m to χPT. The next-to-leading-order
(NLO) expressions are [10]

M2

m =
2m〈ψψ〉

F 2

{

1 + zm

[

αM +
1

Nf

log(zm)

]}

,

(1)

Fm = F

{

1 + zm

[

αF −
Nf

2
log(zm)

]}

, (2)

〈ψψ〉m = 〈ψψ〉

{

1 + zm

[

αC −
N 2

f − 1

Nf

log(zm)

]}

,

(3)
wherez = 2〈ψψ〉/(4π)2F 4.

There is a contribution to〈ψψ〉m linear in m and
quadratically sensitive to the UV cutoff, present even with-
out spontaneous chiral symmetry breaking. This “contact
term”, incorporated here (with a slight abuse of notation)
intoαC , is independent ofNf . It dominatesαC , and in fact
dominates〈ψψ〉m for the entire range ofm values in our
simulations. The chiral-log terms inFm and〈ψψ〉m grow
essentially linearly withNf , while the chiral-log term in
M2

m falls. Each of the (unknown) coefficientsαM , αF and
αC of the analytic terms has a piece, not shown explicitly,
that grows linearly withNf .

For small enoughm, the benchmark massMρ,m can also
be extrapolatedm → 0 using a fit derived fromχPT [11].
Here the NLO term is linear inm (there is nom log(m)
term). Similarly, the NLO term in the chiral expansion of
r0,m is linear inm.

Simulation Details We use domain wall fermions with
the Iwasaki improved gauge action, as used by the RBC-
UKQCD collaboration [12]. Lattice fermion discretiza-
tion typically breaks chiral symmetry, but in the domain
wall formulation the breaking is exponentially suppressed
(with flavor symmetry preserved), making it ideal for the
study of chiral dynamics. Gauge configurations are gener-
ated using the hybrid Monte Carlo method as implemented
in the USQCD application libraries, in particularCPS, via
a multi-level symplectic integrator, and using Hasenbusch
preconditioning and chronological inversion. Autocorrela-
tion is reduced by blocking over sets of 50 trajectories.

The lattice volume is set to323 × 64, with the length of
the fifth dimensionLs = 16 and the domain-wall height
m0 = 1.8. All quantities are given in lattice units. For
Nf = 6 we chooseβ = 2.10. ForNf = 2 the choice
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FIG. 1: Linear chiral extrapolations ofMρ,m and the Sommer
scaler−1

0,m, in lattice units, based on the (solid) points atmf =
0.01 − 0.02. Both show agreement within error betweenNf = 2
andNf = 6 in the chiral limit.

β = 2.70 then leads to nearly the same physical scale in
lattice units. Simulations are performed for fermion masses
mf = 0.005 to 0.03. At finite lattice spacing, even with
mf = 0, the chiral symmetry is not exact, with the vio-
lation captured in a residual massmres ≪ mf . The total
fermion massm is thenm ≡ mf +mres.

Although global topological charge,Q, is an irrelevant
quantity with massless fermions and infinite volume, in a
finite volume it becomes relevant [13]. On a discretized lat-
tice,Q is not conserved, with the system evolving between
sectors, an evolution crucial for the correct sampling of the
path integral at finite volume. With very light fermions,
the evolution ofQ slows dramatically using current Monte
Carlo methods [14]. We find thatQ evolves sufficiently for
mf ≥ 0.01 for bothNf = 2 and 6. Atmf = 0.005 it does
not, leading to systematic shifts in〈ψψ〉m andFm, which
we will explore in a future paper. Here, we present results
for mf = 0.005, but do not include them in our analy-
sis. This also ensures that for eachm,MmL > 4, keeping
the NGB Compton wavelength well inside the lattice. For
Nf = 6, there are also results formf = 0.025, 0.03, but
they are not used in any chiral extrapolations.

Results Values forMρ,m and 1/r0,m are shown in
Fig. 1. The small change in these quantities in the range
m = 0.01 – 0.02, and the absence ofm log(m) terms
in the small-m expansion suggests that the leading, linear
terms should dominate here even forNf = 6. Thus we ex-
trapolatem → 0 using linear fits. The extrapolated values
of Mρ and1/r0,m for Nf = 2 are the same within errors
as theNf = 6 values, indicating that the physical scale is
well matched in lattice units. Numerical values are given
in Table I. For QCD,r0 = 0.378(9) GeV−1 [15], giving
1/Mρr0 = 0.488(12), in reasonable agreement with our
Nf = 2 value1/Mρr0 = 0.561(44).

Turning now toM2

m, Fm, and〈ψψ〉m, and noting that
M2

m/2mFm extrapolates to〈ψψ〉/F 3 in the chiral limit,
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Nf 1/r0 Mρ 〈ψψ〉/F 2 F 〈ψψ〉

2 0.111(4)0.198(14) 0.99(17) 0.0209(41)4.32(94) × 10−4

6 0.100(6)0.207(15) — — —

Nf z αM αF αC χ2/d.o.f.

2 28(16) 0.31(62) 0.64(47) 83(29) 6.50

TABLE I: Chirally extrapolated quantities and fit parameters.
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FIG. 2: Rm ≡ [M2
m/2mFm]6f/[M

2
m/2mFm]2f , versusm ≡

(m(2f)+m(6f))/2, showing enhancement of〈ψψ〉/F 3 atNf =
6 relative toNf = 2.

we can get an estimate of the enhancement of this ratio
by comparingM2

m/2mFm at Nf = 6 andNf = 2
at finite mf . We do this by plotting the ratio of ratios
Rm ≡ [M2

m/2mFm]6f/[M
2

m/2mFm]2f in Fig. 2. (We
use the ratioM2

m/2mFm instead of directly evaluating
〈ψψ〉m/F

3

m because the large contact term in Eq. 3 makes
the chiral extrapolation less reliable.) The evident trendis
thatRm increases asmf decreases. Even disregarding the
point atmf = 0.005, this suggests that the extrapolated
value will be well above unity. A value above1.5, corre-
sponding to a50% enhancement of〈ψψ〉/F 3 atNf = 6,
will emerge unless there is a downturn inRm. This would
require either a conspiracy ofχPT parameters given the
natural upturn of the combined chiral-log terms in Eqs. 1
and 2, or an unexplained and significant downturn before
χPT turns the curve up again asm → 0.

We nevertheless exercise caution by examining the sepa-
rate simulation results forM2

m/2m andFm, shown in Figs.
3 and 4. While there is good evidence that forNf = 2 a
reliable extrapolation ofm → 0 can be performed using
NLO χPT, this is not the case for forNf = 6. There, the
simulation results forFm and the linear growth withNf

of the chiral log terms in Eqs. 2 and 3 indicate that them
values are not yet small enough.

We first confirm that forNf = 2, χPT can be used for
the extrapolation. From Figs. 3 and 4, we see thatM2

m/2m
andFm change little in the rangemf = 0.01 − 0.02, in-
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FIG. 3: The slope of the pseudoscalar mass squaredM2
m/2m in

lattice units, as a function of fermion mass. The fit forNf = 2 is
from a joint fit toM2

m, Fm and〈ψψ〉m using the (solid) points at
mf = 0.01 − 0.02, constrained to match NLOχPT.
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FIG. 4: The Goldstone-boson decay constantFm in lattice units,
as a function of fermion mass. The fit forNf = 2 is a joint
fit to M2

m, Fm and 〈ψψ〉m, using the (solid) points atmf =
0.01 − 0.02, constrained to match NLOχPT.

dicating that NLOχPT (Eqs. 1 and 2) should provide a
reliable fit. (Our results for〈ψψ〉m, not displayed here,
show the expected dominance of the linear contact term.)
Therefore we carry out theNf = 2 extrapolationm → 0
using the combined NLO chiral expansions of Eqs. (1), (2)
and (3). The five-parameter fit is enumerated in Table I,
and the fit curves forM2

m/2m andFm, with error bars, are
shown in Figs. 3 and 4. Taking covariance into account in
error propagation, we find

Nf = 2 :
〈ψψ〉

F 3
= 47.1(17.6). (4)

The values ofαM andαF indicate the reliability of NLO
χPT, although theχ2 (Table I) suggests that it may not yet
be an excellent fit to the data.

We next compare ourNf = 2 results for〈ψψ〉/F 3

andMρ/F to the QCD quantities〈qq〉/f 3

π andmρ/fπ,
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a reasonable comparison since the light-quark massesmq

are so small. Withfπ = 92.4(0.3) MeV andmρ =
775 MeV, we havemρ/fπ = 8.39(0.04), compared
to our valueMρ/F = 9.4(2.5). The condensate〈qq〉
is renormalization-scheme dependent, as ismq. In the
MS scheme at2 GeV (≃ 2.6mρ), Ref. [16] finds
〈qq〉2 GeV/f

3

π = 24.1(4.3). In our case,〈ψψ〉 is defined
by lattice regularization witha−1 ≃ 5Mρ (equivalent to
3.85 GeV). The increase in〈qq〉 going to this higher scale
can be estimated perturbatively from the anomalous dimen-
sion of the mass operator [17]. We find〈qq〉3.85 GeV/f

3

π =

29.5(5.3). There is also a renormalization factorZMS ,
which converts theMS condensate to the lattice-cutoff
scheme. Using Ref. [18], we findZMS(3.85 GeV) =
1.227(+37)(−11), and therefore〈qq〉3.85 GeV,lat/f

3

π =
36.2(6.5), in agreement with Eq. (4).

Finally, we discuss ourNf = 6 results. While the
M2

m/2m values (Fig. 3) change very little in the range
mf = 0.01 − 0.02, suggesting that NLOχPT could be
reliable, we have observed thatχPT is unlikely to be reli-
able forFm. (The condensate〈ψψ〉m (not shown) again
varies rapidly, and approximately linearly, indicating the
dominance of the contact term.) We argue, though, that a
very conservative lower bound can be placed on〈ψψ〉/F 3

by boundingF from above and〈ψψ〉/F 2 from below.
ForFm (Fig. 4), theNf = 6 points atmf = 0.01−0.02

decline steeply with decreasingm. The eventual reliability
of χPT (Eq. 2) at lower masses will, because of the nega-
tive curvature in the chiral log term, bend the points down
even more rapidly. A very conservativeupper bound on the
extrapolated valueF should therefore emerge from a linear
fit through the three points. This givesF ≤ 0.0208(26),
essentially the same as thevalue of F in the Nf = 2
case. ForM2

m/2m (Fig. 3), theNf = 6 points in the
rangemf = 0.01 − 0.02 are nearly flat as a function
of m. SinceχPT behavior (Eq.1), with its positive cur-
vature, sets in either in this mass range or lower, bend-
ing the points up asm is decreased, a very conservative
lower bound on the extrapolated value〈ψψ〉/F 2 should
emerge from a linear fit through these three points. This
gives〈ψψ〉/F 2 ≥ 1.25(5).

Together, these give the very conservative lower bound

Nf = 6 :
〈ψψ〉

F 3
≥ 60.0(8.0). (5)

The central value leads to at least a28% increase relative
toNf = 2 (Eq.4), and the absence of enhancement is ex-
cluded at the73% confidence level. We also note that if
this quantity is compared to the more preciseNf = 2 ratio
from QCD phenomenology (36.2 (6.5)), the lower bound
on enhancement becomes30% at1σ.

Conclusion The ratio 〈ψψ〉/F 3 in an SU(3) gauge
theory withNf massless Dirac fermions in the fundamen-
tal representation, with the condensate defined by a lattice

cutoff fixed in physical units, is enhanced whenNf is in-
creased from2 to6 – by at least50% from inspection of the
simulation results. Even very conservative lower bounds
from χPT-based analyses indicate a substantial increase.
An enhancement of less than50% would require a signif-
icant and hard-to-explain downturn inRm (Fig. 2). We
expect the enhancement seen here, arising dominantly at
the lattice scale, to be qualitatively the same as with a con-
tinuum cutoff from the onset of new physics.

It will be interesting to compare these results with a per-
turbativeMS computation of the enhancement based on the
anomalous dimension of〈ψψ〉. And it will be important to
obtain results for smallerm and perhaps study the chiral
extrapolations at NNLO. We must also explore larger val-
ues ofNf (→ N c

f ) and other gauge groups, and study the
consequences of walking for quark and lepton mass gener-
ation and electroweak precision measurements.
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